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The axisymmetric vibrational behaviour of two concentric dissimilar orthotropic
composite annuli is investigated. Sixth order systems of equations of motion for each
annulus are presented together with the matching conditions at their interface. The common
frequency of vibration of the structure is determined numerically using a "nite di!erence
method. Bi-layered, triple-layered and bi-#triple-layered material compositions were
considered. Computed results for a wide range of possible orthotropic material
combinations indicate the complex role the material orthotropies play in determining the
annuli's vibrational response. It is shown that the frequency increase factor (de"ned as the
ratio between the highest and lowest frequencies obtained for all inner and outer material
combinations considered) is very sensitive to the geometric, heterogeneity and orthotropy
parameters of the composite annular plates. Unfortunately, no simple rule of thumb formula
for estimating the e!ect of the material composition on the frequency appears to be
deducible. However, in keeping with previous results for concentric dissimilar isotropic
annuli, the geometry (expressed via the radii of the inner and outer annuli) and the di!erent
material compositions were found to exert a considerable in#uence on the natural frequency
of vibration. In the absence of appropriate analytical expressions, optimization and, thereby,
control of the natural frequency of composite plate-like structures, through geometry
and material composition, must make use of parametric studies similar to the current
one.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The problem of vibrations of composite plates is of great importance in the context of
aerospace and mechanical engineering applications. The heterogeneity of the plates is
almost exclusively considered in the thickness direction. Thus, for example, Stavsky and
Loewy [1] presented a closed-type solution for axisymmetric vibrations of circular plates
laminated from various isotropic materials. This work was extended by Greenberg and
Stavsky [2] to the case of axisymmetric vibrations of polar orthotropic layered plates.
Recently, Lin and Tseng [3] have tackled the problem of free vibrations of polar
orthotropic laminated circular and annular plates using a "rst order shear deformation
theory and a "nite element solution (see also relevant references quoted therein).

However, there is practical engineering interest in the behaviour of multi-annular plates.
Frostig and Simitses [4] investigated the buckling of multi-annular plates. Each of the
isotropic, homogeneous plates was permitted to have its own geometry or material
properties. The plates were subjected to axisymmetric in-plane forces, either at the outer
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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edge or at one of the circumferential joints or a combination of the two. Numerical results
were presented for two-part plates, indicating the in#uence of the di!erent properties of the
annular parts. Lee [5] analyzed the buckling of annular plates with stepped variation in
thickness using a numerical method based on the Rayleigh principle. The plates were
single-layered, isotropic and consisted of the same material. The in#uence of the thickness
ratio of the various concentric plates on the compressive buckling load was computed.

An allied problem was considered by Gorman [6] who investigated the transverse
vibrational frequencies of polar orthotropic annular plates of variable thickness using the
"nite element method.

More recently, Greenberg and Stavsky [7] examined a situation in which each concentric
annulus was laminated of di!erent isotropic materials giving rise to heterogeneity in both
the thickness and radial directions. A closed-type solution was found from which the
natural frequency of vibration could be extracted. It was found that for certain
combinations of material lay-ups higher frequencies of vibration could be achieved than for
an equivalent single plate structure. In addition, altering the radius-to-thickness ratio of the
inner plate could optimize the higher frequencies. The extensive computed results provided
an insight into the main factors that in#uence, and can therefore be potentially used to
control, the natural frequencies of vibration. The popularity of composite materials in
aerospace structures, due to their high strength-to-weight ratio, motivates the current work.
In this paper, the scope of reference [7] is broadened to consider concentric dissimilar
orthotropic composite plates undergoing axisymmetric vibrations.

2. FORMULATION OF THE PROBLEM

2.1. STRAIN}DISPLACEMENT RELATIONS

Consider two concentric annular plates of equal thickness h. Properties of the inner and
outer plates will be denoted by superscripts I and O respectively. Let b and c be the inner
and outer radii of the inner plate, respectively, and c and a the inner and outer radii of the
outer plate (see Figure 1). Both plates are composed of orthotropic materials with elastic
properties that are thickness dependent. The compositions of the two plates are permitted
to be di!erent from each other. Following Kirchho!'s hypothesis the strain}displacement
relations, in each plate, are

�
�
"u�, ��"u/r, (1)

where the prime denotes di!erentiation with respect to r. The radial, circumferential and
transverse displacements are, respectively, taken to be

u (r, z, t)"u
�
(r, t)#z�, v(r, z, t)"0, �(r, z, t)"w

�
(r, t), (2)

where z is the thickness co-ordinate and � is the change of slope in the radial direction. As
a consequence, the strains are expressed as linear functions of z :

(�
�
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, ���)#z(�

�
, ��). (3)

The in-plane radial and circumferential reference strains, at z"0, are given by
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�
/r, (4)



Figure 1. Composite concentric dissimilar orthotropic annuli.
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whereas the corresponding plate curvatures are given in terms of �, the radial slope of the
deformed plate

�
�
"��, ��"�/r, �"!w�. (5)

2.2. EQUATIONS OF MOTION

The equations of in"nitesimal motion for the axisymmetric plate deformation considered
are

�
���

#�
����
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!��)/r"�uK , (6)
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/r"�wK , (7)

where � is the material density, and dot denotes di!erentiation with respect to time.
De"ning plate in-plane stress resultants and transverse shear force, stress couples and
inertia terms via
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(where h
�
and h

�
are distances to the bounding plane of the plate) and performing suitable

integrations of equations (6) and (7) over the plate thickness, the following dynamical
equations are obtained for the annular plates:

(rN
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, (9, 10)
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2.3. STRESS}STRAIN RELATIONS

Hooke's law for a polar orthotropic material is written in terms of the elastic sti!ness
moduli for the plane stress as

�
�
�
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��
E����
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��� , (12)

where the numerical values of the moduli vary from one ply to another. Combining
equations (8) and (12) produces the stress}strain relations
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where the constants A, B and D are de"ned by the integrals
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dz (i, j"r, �) (14)

with the symmetry relation

E
��"E�� . (15)

2.4. DISPLACEMENT EQUATIONS OF MOTION

For axisymmetric vibrations of circular frequency 	 the displacement "eld can be
expressed in the usual fashion as a product of spatial and time-dependent functions:

u���(r, z, t)";� � �(r, z)ei��"[;���
�

(r)#z����
�
]ei��,

w���(r, z, t)"=�� �(r, z)ei��"=���
�

(r)ei�� ( j"I, O), (16)
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�

"!=����
�

.

Although the superscript describes whether the inner or outer plate is being referred to, the
concentric plates are assumed to vibrate as a single structure with the same frequency.

The equations of motion (9)}(11) are then reduced to a set of simultaneous ordinary
di!erential equations in ;���

�
and = ���

�
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where the di!erential operators are
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In these equations the prime denotes di!erentiation with respect to r. As in equations (16)
the superscript j ("I, O) in equations (17)}(21) indicates that (a) there will be two sets of
equations of motion, for the inner and outer plates, and (b) the plates laminations and
densities may be dissimilar. Thus, the four equations (17) must be solved subject to
appropriate boundary conditions, as well as matching conditions at the interface between
the two concentric plates. The equations can be simpli"ed slightly by neglecting rotatory
inertia and choosing a convenient reference plane that eliminates the appearance of terms
containing R

�
(see reference [1]).

2.5. BOUNDARY AND MATCHING CONDITIONS

In order to extract the frequency of vibration it is necessary to specify boundary
conditions for each of the plates and matching conditions at their interface. A condition of
complete restraint is imposed along the circumference of the outer plate r"a:

;���(a)"= ��� (a)"=����(a)"0. (22)
The inner circumference of the inner plate is taken to be clamped so that at r"b:

;���(b)"= ���(b)"=����(b)"0. (23)

At the interface between the two plates, r"c, appropriate matching conditions are
imposed:

=���(c)"= ���(c), =���� (c)"=���� (c), (24, 25)
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and

N� � �
�

"A�� �
��
;� � ��#A� � �

�� ;� � �/r!B�� �
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Thus, there are 12 boundary and matching conditions for the two sets of sixth order
di!erential equations, (17), whose eigenvalues are sought.
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3. DETERMINATION OF FREQUENCY OF VIBRATION

For the special case of axisymmetric vibrations of concentric isotropic composite plates
the simultaneous equations (17) for ;� � �

�
and=� � �

�
reduce to equations (17) of reference [6],

where a closed-type solution was given in terms of Bessel functions. For the orthotropic case
under consideration here no such solution appears to be available so that a numerical
approach for solving the eigenvalue problem must be adopted. A "nite di!erence method is
used.

The radial width of the plate, a!b, is divided into N equispaced sections of length �r.
Thus, a point at a distance r

�
from the origin is de"ned by

r
�
"b#i�r, i3�0, 1, 2, 3, . . . ,N� with a!b"N�r. (34)

It is essential to impose the constraint that �r is chosen such that the point of interface
between the inner and outer plates coincides with an integer value of i, say N

	
�r"c.

Equations (17) are discretized, using fourth order central di!erences, and replaced by their
"nite di!erence approximations at the points corresponding to i"1, 2, 3, . . . (N

	
!1),

(N
	
#1), . . . , (N!1). At r"a and b the values of (; ���

�
,= ���

�
) and (; ���

�
,= ���

�
) are,

respectively, zero (see equations (22) and (23)), and hence the indices i"0 and N do not
appear. It is clear that the use of fourth order central di!erence discretization of the
governing equations at the points i"1 and N!1 introduces values of the dependent
variables at points that are external to the range b)r)a. Values of; ���

�
and= ���

�
beyond

the outer circumference are expressed in terms of their values at internal points using (a)
fourth order shifted backward di!erences for the derivative boundary condition, namely,
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where the subscript N#1 borne by = ���
�

refers to its radial location, and (b) one of the
governing equations for the outer annulus written at r"a using shifted backward
di!erences. This yields two linear algebraic equations for (;���

��
��
, =���

��
��
) which are

readily solved in terms of internal values of the dependent variables. The procedure at the
inner circumference for ;���

�
and =���

�
is identical except that shifted forward di!erences are

now appropriate.
The matching conditions at i"N

	
must now be applied. For the inner annulus,

equations (17) in their discretized form at i"(N
	
!1) introduce the &&external'' unknowns
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(&&external'' is used here in the sense
of r'c). For the outer annulus, the discretized equations (17) at i"(N

	
#1) introduce the

&&external'' unknowns ;���
��
	��

and =���
��
	��

and the values of ;���
��
	

and =���
��
	

(&&external'' is
used here in the sense of r(c). Thus, eight unknown quantities are to be determined in
terms of appropriate &&internal'' values. To achieve this end use is made of the six matching
conditions and two governing equations. The derivatives therein are replaced by
fourth order shifted forward/backward di!erences according to whether inner (I) or
outer (O) parameters, respectively, are referred to. As a result of this procedure a set of
(2N!2) simultaneous linear algebraic equations is obtained which is written in matrix
form as

(�!	�I)�"0, (36)

where � and I are the "nite di!erence coe$cients and unity matrices, respectively, and
� contains the values of;

�
and=

�
at the discrete "nite di!erence points. Equation (36) has

a non-trival solution if

det(�!	�I)"0, (37)



TABLE 1

Material properties

Material Density � E
��

E
�� E��

(abbreviation) (kg/m	�10	) (N/m��10��) (N/m��10��) (N/m��10��)

Aluminium 2)595 6)85 1)51 6)85
(AL)

S-glass epoxy 2)002 5)21 0)3 1)18
(SGE)

Boron}aluminium 2)725 23)39 3)43 14)89
(BA)

High strength 1)558 12)41 0)28 1)03
graphite epoxy

(HSG)
PRD 49-III epoxy 1)391 7)92 0)12 0)41

(PRD)
Steel 7)492 20)6 6)8 20)6
(ST)
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so that the problem is reduced to determining the eigenvalues of the matrix �. This is
achieved by utilizing standard computer library sub-routines that are available for this
purpose.

The computer code that was developed for the purpose of computing the vibrational
frequency of the concentric dissimilar orthotropic composite annular plates in this work
was checked by comparison with the analytical results for similar isotropic plates. The
comparison yielded information about the reliability of the code and the number of
intervals into which the radial co-ordinate had to be sub-divided for accurate predictions. It
was found that satisfactory convergence of the results could be achieved using about
50 sub-divisions.

4. NUMERICAL RESULTS AND DISCUSSION

To gain an insight into the way in which geometrical parameters and combinations of
dissimilar material lay-ups in the concentric plates can in#uence the natural frequency of
vibration a number of illustrative examples will be presented. Bi-layered and triple-layered
structures will be considered. The relevant data pertaining to the properties of the materials
examined are listed in Table 1. In all instances to be discussed the total plate thickness will
be taken as h"1)016 mmwhilst the ratio a/h"25. For ease of presentation two concentric
annuli comprising materials A, B, . . . in the inner annulus and X, Y, . . . in the outer annulus
will be referred to as an A-B, . . . ; X-Y, . . . combination. Furthermore, the increase factor for
two concentric annuli is de"ned as the ratio between the highest and lowest frequencies
obtained for all inner and outer material combinations considered.

4.1. BI-LAYERED CONCENTRIC ANNULI; ISOTROPIC#ORTHOTROPIC MATERIAL

COMBINATIONS

Initially, two bi-layered concentric annuli comprised of the same isotropic#orthotropic
combination of materials are considered. However, the relative thickness of the materials in



Figure 2. Bi-layered concentric SGE}AL/SGE}AL annuli: variation of the lowest frequency of vibration in
phase space of inner and outer annuli's composition: a/h"25, b/h"5, c/h"15.
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the two annuli will generally be di!erent. Consider an SGE}AL; SGE}AL combination. To
obtain the entire map of the lowest natural frequencies, for a given ratio between the radius
of the inner annulus to that of the outer annulus, all possible combinations of relative
thickness in both the inner and outer annuli are examined. Thus, for "xed h���

�
and h���

���
,

h���
�

and h���
���

are varied (keeping the total thickness constant) to cover all combinations of
their relative thickness. Then, h���

�
and h���

���
are changed and the inner annulus' layering is

varied again following the aforementioned procedure. Further reiteration in this fashion
ensures that all material combinations are investigated.

Figure 2 presents a three-dimensional parameter plot showing the frequency of vibration
versus the di!erent material combinations. The values of the inner radii of the inner and
outer annuli are b"5h and c"15h respectively. The map conveys the topographical
complexity of the way in which the di!erent material lay-ups in the two annuli in#uence the
natural frequency. Nevertheless, it is found that the increase factor is only about 1)05. For
this case the maximum frequency is obtained when the lay-ups in both annuli are identical
(h���

���
"h���

���
+6h/7), but the minimum occurs for di!erent inner and outer lay-ups

(h���
���

+2h/7, h���
���

+5h/14).
In Figure 3 the behaviour of the frequency is drawn as a function of h���

���
/h for di!erent

values of h���
���

/h. The shapes of these curves are reminiscent of those obtained by Greenberg
and Stavsky [2] for a single orthotropic composite SGE}AL plate. The highest frequency
shown on the left-hand side of Figure 3 corresponds to that of a single annulus comprised of
AL, whereas the lowest frequency on the right-hand side is that of a single SGE annulus.
The dependency of the frequency on the lay-up in the concentric annuli is evidently
non-linear. If a straight line connects the two aforementioned points in Figure 3 it is clear
that for a certain range of material arrangements the frequency will be lower than the linear
value whereas for the rest of the range it will be higher. Moreover, for each "xed lay-up in
the inner annulus altering the outer annulus's lay-up leads to a value of the frequency that
transcends the frequency obtained when only SGE or AL are present in the outer annulus.



Figure 3. Bi-layered concentric SGE}AL/SGE}AL annuli: variation of the lowest frequency of vibration with
composition of outer annulus for di!erent inner annulus compositions: a/h"25, b/h"5, c/h"15.
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Interestingly, this maximum occurs when the outer annulus comprises about 80%
SGE#20% AL, irrespective of the make up of the inner annulus. Similarly, a minimum
value of the frequency is observed on each curve when the outer annulus contains about
25% SGE#75% AL. Evidently, the tiering of the outer annulus primarily determines the
shape of the curves, whereas the inner composition is more dominant for the determination
of their location. This highlights the roles of both the annuli in establishing the vibrational
response of the structure.

The e!ect of the geometry of the two concentric annuli is illustrated in Figures 4(a)
and 4(b) where three-dimensional maps are drawn for an HSG}ST/SGE}AL combination.
Figures 4(a) and (b) relate to c/h"10 and 20 respectively. The dramatic change in the
topography is striking. Furthermore, for c/h"10 the increase factor is 1)07, whereas for
c/h"20 it jumps to 1)76.

The way in which the tiering of the annuli in#uence these results can be seen in
Figures 5(a) and 5(b). In Figure 5(a) the frequency is plotted as a function of the inner
annulus's lay-up, for the outer annulus's lay-up that yields the overall maximum frequency
and for three values of c/h. Figure 5(b) shows the same plots but for the minimum frequency.
The importance of the HSG}ST composition of the inner annulus is evidently of prime
importance since both the maximum and minimum frequencies increase as c/h increases
(i.e., the inner annulus occupies a greater volume of the entire structure than the outer one
does). However, it should be noted that the composition of the annuli at which the extrema
occur changes with the geometry. For example, when c/h"20 the highest frequency occurs
when there is only HSG in the inner annulus and only AL in the outer one, but when
c/h"15 the make up is 100% HSG in the inner annulus and 80% SGE#20% AL in the
outer one.



Figure 4. Bi-layered HSG}ST/SGE}AL concentric annuli: in#uence of c/h on variation of the lowest frequency
of vibration in phase space of inner and outer annuli's composition: a/h"25, b/h"5; (a) c/h"10, (b) c/h"20.
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4.2. BI-LAYERED CONCENTRIC ANNULI; ORTHOTROPIC#ORTHOTROPIC MATERIAL

COMBINATIONS

Two bi-layered concentric annuli comprised of the same orthotropic#orthotropic
combination of materials are now considered. However, the relative thickness of the
materials in the two annuli will generally be di!erent. In Figure 6 a three-dimensional
parameter is shown for an HSG}BA/HSG}BA combination. Comparison of Figure 6 with
Figure 2 reveals some qualitative topographical similarity. However, the current material
set-up exhibits higher frequencies and a more curved shape, the latter presumably due to the
wider range of natural frequencies involved. Indeed, the increase factor is found to be
approximately 1)1.

In Figure 7, the dependence of the frequency on the inner annulus composition is shown
for di!erent outer annulus composition and for c/h"20. Also drawn (as a broken line), for
comparative purposes, is the frequency response of a single HSG}BA annulus (a/h"25,
b/h"5) as a function of composition. Some points should be noted. (a) The curves for the



Figure 5. Bi-layered HSG}ST/SGE}AL concentric annuli: variation of lowest frequency of vibration with
composition of inner annulus and annulus geometry for (a) outer annulus lay-up that yields the overall maximum
frequency and (b) outer annulus lay-up that yields the overall maximum frequency.
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concentric annuli manifest a behaviour that is similar to that of the single annulus. The
increase factor for the latter is about 1)1. A close examination of all the data (including that
not shown in Figure 7) reveals that the increase factor for the concentric annuli is 1)18. Thus,
in the present case, use of two annuli results in a relatively mild advantage in terms of the
frequency in comparison with the use of a single annulus. (b) Comparison of the concentric
annuli curves for di!erent outer compositions discloses the &&wave-like'' response of the
frequency to the inner annulus composition. Interestingly, the lower extrema on the curves
occur at approximately the same inner composition of h���HSG/h+0)3}0)34 whilst the upper
extrema occur at h���HSG/h+0)8}0)84, irrespective of the outer annulus composition.
Qualitatively, this is reminiscent of the behaviour described earlier for the SGE}AL/
SGE}AL combinations (see Figure 3).



Figure 6. Bi-layered concentric HSG}BA/HSG}BA annuli: variation of the lowest frequency of vibration in
phase space of inner and outer annuli's composition: a/h"25, b/h"5, c/h"15.

Figure 7. Bi-layered concentric HSG}BA/HSG}BA annuli: variation of the lowest frequency of vibration
variation with composition of inner annulus for di!erent outer annulus composition; broken line is curve for
a single HSG}BA annulus: a/h"25, b/h"5, c/h"20.
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Figure 8. Bi-layered concentric BA}PRD/BA}PRD annuli: variation of the lowest frequency of vibration in
phase space of inner and outer annulus composition: a/h"25, b/h"5, c/h"15.

Figure 9. Bi-layered concentric HSG}PRD/HSG}PRDannuli: variation of the lowest frequency of vibration in
phase space of inner and outer annuli's composition: a/h"25, b/h"5, c/h"15.
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Figure 10. Triple-layered concentric BA}AL}BA/AL}BA}AL annuli: variation of the lowest frequency of
vibration with composition of inner annulus for varying outer annulus composition: a/h"25, b/h"5, c/h"15.
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A three-dimensional parameter plot is drawn for a BA}PRD/BA}PRD combination in
Figure 8. The topography is notably di!erent to that in Figure 6 and there is a 4% growth in
the increase factor, to 1)14. The maximum frequency occurs when BA occupies 100% of
both the inner and outer annuli, i.e., for a single-layered BA annulus. Conversely, the
minimum frequency is found for a single PRD annulus.

Figure 9 illustrates the three-dimensional plot for an HSG}PRD/HSG}PRD
combination. The topography has #attened out considerably in comparison with
Figures 6 and 8, and only mild extrema are visible. The increase factor for this combination
is found to be about 1)1. Now, the maximum frequency is found for a single HSG annulus,
whereas the minimum frequency is supplied by a single PRD annulus. Although no
clear-cut, simple rule of thumb emerges from these results it is of interest to observe that of
the three materials considered in Figures 8 and 9 the one with the smallest orthotropy ratio,
E��/E��

, is PRD having a value of 0)0518. The values for BA and HSG are 0)6369 and 0)083,
respectively, and the maximum frequencies that are found for BA and HSG single annuli
(see Figures 8 and 9) obey the inequality 	

��
'	

���
. However, the non-linear frequency

response to the inner and outer annulus composition, evident from Figures 6, 8 and
9 underscores the subtle, non-trivial way in which the orthotropy of the materials in the
annuli in#uence the vibrational response.

4.3. TRIPLE-LAYERED CONCENTRIC ANNULI

Suppose each of the concentric annuli is comprised of an upper and lower layer (not
necessarily of the same material) glued to a core of a di!erent material. The total thickness
of the structure is maintained constant, as is the core thickness that is "xed at 0)1h. The
relative thickness of the upper and lower layers in both the inner and outer annuli is varied
to generate the entire frequency response for all material combinations.



Figure 11. Triple-layered concentric HSG}AL}BA/BA}AL}HSG annuli: variation of the lowest frequency of
vibration composition of inner annulus for varying outer annulus composition: a/h"25, b/h"5, c/h"15.
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Consider a BA}AL}BA/AL}BA}AL combination. In Figure 10 the natural frequency is
plotted against the inner annulus composition, as the outer composition is varied. The pairs
of numbers on each curve indicate the relative thickness of AL in the upper and lower layers
in the outer annulus. The curves are symmetric, as expected, with each possessing
a maximum for the symmetrically layered inner annulus. The maximum frequency for all
material combinations is found when the outer annulus is bi-layered. The increase factor is
approximately 1)14.

Now consider an HSG}AL}BA/BA}AL}HSGcombination. The relevant frequency plot
shown in Figure 11 is di!erent from that of Figure 10. The extrema previously observed in
the bi-layered combinations reappear here. The maximum point on each curve occurs when
there is about 70%HSG#10%AL#20% BA in the inner annulus, irrespective of the outer
annulus composition. A similar remark is applicable to the minimum point on each curve
(15% HSG#10% AL#75% BA). Furthermore, for a "xed inner composition, the
frequency does not behave monotonically with the outer annulus composition. The lower
and upper curves shown correspond to outer compositions of 10% AL#90% HSG and
24% BA#10% AL#66% HSG respectively. For h���

��
/h'0)24 a &&wave-like'' behaviour is

observed as the outer composition is altered. Despite the qualitative di!erences between the
curves in Figures 10 and 11 the increase factor for the three material case is roughly the
same, 1)14, as for the BA}AL}BA/AL}BA}AL combination. However, in quantitative
terms the HSG}AL}BA/BA}AL}HSG combination manifests higher frequencies.

4.4. BI-#TRIPLE-LAYERED CONCENTRIC ANNULI

Consider a bi-layered HSG}BA inner annulus surrounded by a triple-layered
BA}HSG}BA outer annulus. A three-dimensional parameter plot is drawn in Figure 12 for



Figure 12. Bi-#triple-layered concentric HSG}BA/BA}HSG}BA annuli: variation of the lowest frequency of
vibration in phase space of inner and outer annuli's composition: a/h"25, b/h"5, c/h"15.
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this combination. It is instructive to compare this "gure to Figure 7 which illustrates the
phase plane plot for bi-layered HSG}BA concentric annuli. The topologies of the two
surfaces are quite di!erent, once again indicating the extreme sensitivity of the frequency to
the layering of the two annuli. Nevertheless, the highest frequencies attained are rather
close, of the order of 1)45!1)46�10� s��, as are the increase factors (1)08 for the
bi-#triple-layered annuli as compared to 1)1 for the bi-layered annuli). Thus, for the
geometry and material lay-ups considered here it seems that there is little to be gained by
encompassing the inner annulus with a triple-layered outer annulus.

5. CONCLUSIONS

An analysis of the vibrational behaviour of two concentric dissimilar orthotropic annuli
has been presented. The governing "eld equations were solved numerically using a fourth
order "nite di!erences method. Bi-layered triple-layered and bi-#triple-layered material
compositions were considered. Computed results for a wide range of possible orthotropic
material combinations does not indicate any simple rule of thumb formula for estimating the
e!ect of the material composition on the frequency. However, in keeping with previous results
[7] for concentric dissimilar isotropic annuli the geometry (expressed via the radii of the inner
and outer annuli) was found to have a considerable in#uence on the natural frequency of
vibration. In the absence of appropriate analytical expressions, optimization and, thereby,
control of the natural frequency of composite plate-like structures, through geometry and
material composition, must make use of parametric studies similar to the current one.
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